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Abstract: We derive a product rule satisfied by restricted Schur polynomials. We focus

mostly on the case that the restricted Schur polynomial is built using two matrices, although

our analysis easily extends to more than two matrices. This product rule allows us to

compute exact multi-point correlation functions of restricted Schur polynomials, in the free

field theory limit. As an example of the use of our formulas, we compute two point functions

of certain single trace operators built using two matrices and three point functions of certain

restricted Schur polynomials, exactly, in the free field theory limit. Our results suggest

that gravitons become strongly coupled at sufficiently high energy, while the restricted

Schur polynomials for totally antisymmetric representations remain weakly interacting at

these energies. This is in perfect accord with the half-BPS (single matrix) results of hep-

th/0512312. Finally, by studying the interaction of two restricted Schur polynomials we

suggest a physical interpretation for the labels of the restricted Schur polynomial: the

composite operator χR,(rn,rm)(Z,X) is constructed from the half BPS “partons” χrn(Z)

and χrm(X).

Keywords: Gauge-gravity correspondence, AdS-CFT Correspondence, D-branes.

mailto:rajsekhar@dacollege.org
mailto:robert@neo.phys.wits.ac.za
mailto:michael.stephanou@students.wits.ac.za
http://jhep.sissa.it/stdsearch


J
H
E
P
0
6
(
2
0
0
8
)
1
0
1

Contents

1. Introduction 1

2. A product rule for restricted Schur polynomials 4

2.1 Dual characters 4

2.2 Product rule 5

3. Computation of the restricted Littlewood-Richardson numbers 7

3.1 On the diagonal restricted characters of two cycles 7

3.2 Off the diagonal restricted characters of two cycles 9

3.3 Some example computations of restricted Littlewood-Richardson coefficients 17

4. Graviton interactions 18

5. Interpretation of restricted Schur polynomials 22

6. Discussion 24

A. Identities and notation 26

B. A formula for the restricted Littlewood-Richardson numbers 27

C. More than 2 matrices 29

D. Restricted character computations 30

1. Introduction

The AdS/CFT correspondence [1] has provided the possibility of studying quantum gravity

non-perturbatively. A good example of this progress are the half-BPS type IIB geometries

in asymptotically AdS spaces, constructed by Lin, Lunin and Maldacena [2] and their con-

nection with the semiclassical states of a free fermi system [3, 4]. It would be fascinating to

extend these studies beyond the half-BPS sector. The present work is directed at this goal.

In the boundary super Yang-Mills theory, the operators relevant for the half-BPS LLM

geometries are constructed using a single free complex Higgs field Z. The dynamics of a

single free matrix is captured by N free fermions in a harmonic potential [3 – 7]. At large

N this single matrix dynamics has a semiclassical description in terms of droplets of fermi

fluid in phase space. Remarkably, LLM showed that there is a similar structure in the

classical geometries in the bulk.
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To go beyond the half-BPS sector, one needs to study multi-matrix dynamics. In

general, this is a formidable problem. There has however, been some recent progress: three

independent bases for general multi-matrix models have been identified. For a review of

these developments and the work leading up to them, see [8]. The basis described in [9]

builds operators with definite flavor quantum numbers; we call this basis the flavor basis.

The basis of [10] uses the Brauer algebra to build correlators involving Z and Z†; we call

this basis the Brauer basis. The Brauer basis seems to be the most natural for exploring

brane/anti-brane systems. The basis of [11] most directly allows one to consider open string

excitations [12 – 16] of the operator; we call this the restricted Schur basis. These three

bases do not coincide and a detailed link between them is an interesting open problem. All

three bases diagonalize the two point functions in the free field theory limit.

Completeness of the flavor basis was convincingly demonstrated [9] by arguing that

the number of such operators matches the number of gauge invariant operators that can

be constructed [17], at both infinite and finite N . The flavor basis also gives a group

theoretic way to approach higher point functions (see [9] where three and higher point

functions are obtained) and to obtain factorization equations which can be used to build

a probability interpretation [18]. By exploiting supergroups [9] have also explained how to

include fermions in addition to the Higgs fields. Finally, the one loop correction to these

two points functions has been considered in [19].

Arguments for the completeness of the restricted Schur basis in [11] demonstrated the

number of restricted Schur polynomials matches the number of gauge invariant operators

that can be constructed [17], again at both infinite and finite N , for a number of examples.

A proof of this matching for infinite N is known [20]. In this article we will compute exact

three and higher point correlation functions of restricted Schur polynomials, in the free

field theory limit.

Our approach to the computation of multipoint functions has a simple algebraic de-

scription: We start by deriving a product rule on the space of restricted Schur polynomials:

the product of any two restricted Schur polynomials can be expressed as a linear combi-

nation of restricted Schur polynomials. Applying the rule (n − 1) times we can collapse

the product of n restricted Schur polynomials to a linear combination of restricted Schur

polynomials. In this way, an arbitrary multipoint function can be reduced to a linear combi-

nation of two point functions - something that we know how to compute. These multipoint

functions contain dynamical information about the theory, and hence they should reveal

interesting physics. As an example, studying the Yang-Mills theory at finite N probes

truly quantum mechanical aspects of the bulk gravity. At finite N only fluctuations with

a low enough excitation energy can be interpreted as gravity modes propagating in the

bulk. It is appropriate, at low energies, to use the graviton degrees of freedom to set up a

perturbative description. At high energies, the description will employ more fundamental

microscopic degrees of freedom. Since

R

lp
∼ N

1
4 ,

with R the AdS radius and lp the ten-dimensional Planck scale, one might expect a break-
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down of the low energy description at energies ∼ N
1
4 [22]. Exact finite N multi-point corre-

lation functions were used in [22] to explore this expectation. Using an operator bosoniza-

tion of a finite number of nonrelativistic fermions [21], exact computations of three-point

correlators show that perturbation theory only breaks down at the scale N
1
2 [22]. There

are at least two other arguments for this scale: in [23] the groundstate wavefunction [24]

for a scalar field on AdS5 arising from a mode with large angular momentum l was studied.

The size of this wavefunction for an LLM graviton decreases with energy; at an energy

scale of ∼ N
1
2 it becomes of order the Plank scale. An argument for this scale can also

be made directly in the field theory: for operators constructed with a small number of

Higgs fields, operators with the same number of fields but with a different number of traces

are orthogonal at large N . Identifying the number of traces in an operator with particle

number, the supergravity Fock space structure emerges. However, when the number of

fields are of order N
1
2 , operators with a different number of traces are no longer orthogo-

nal [25, 26] and “trace number” is just not a good quantum number. To go beyond these

energies, one needs to employ a new set of degrees of freedom that are weakly coupled and

hence provide a more meaningful description of the bulk physics than gravitons. In [22] it

was argued that these new degrees of freedom are the giant gravitons. The point is that

even at high energies, giant gravitons remain weakly interacting. The relevant correlator

computations are in the half-BPS sector. By using our product rule we can compute giant

graviton correlators that go beyond the half-BPS sector. Our results are consistent with

those of [22] and we find that even in this more general setting giant gravitons continue to

furnish suitable high energy degrees of freedom.

Schur polynomials built from a single matrix have, by now, a clear interpretation in the

dual gravitational theory. Developing an interpretation for restricted Schur polynomials

in an important problem. Our methods allow a study of the interaction of two restricted

Schur polynomials, which should shed light on this issue. This is indeed the case: we

suggest a physical interpretation for the labels of the restricted Schur polynomial: the

composite operator χR,(rn,rm)(Z,X) is constructed from the half BPS “partons” χrn(Z) and

χrm(X). Evidence for this proposal comes from considering composite operators in which

the constituent partons are weakly interacting: the interaction of two such composites is

largely determined by the interactions of the partons.

In the remainder of this introduction we will describe the organization of this paper.

Section 2 describes the product rule satisfied by the restricted Schur polynomials. We focus

on polynomials built using two complex Higgs fields, X and Z. The analogous product rule

for the Schur polynomials is determined by the Littlewood-Richardson numbers. For this

reason, we call the numbers that enter our rule restricted Littlewood-Richardson numbers.

In section 3 we develop techniques that can be used to evaluate the restricted Littlewood-

Richardson numbers. Essentially, we perform a change of basis so that in the new basis

we can compute the restricted characters using the strand diagram techniques developed

in [16]. These methods are not very efficient and one is not able, in general, to effectively

deal with restricted Schur polynomials which have both a large number of X fields and a

large number of Z fields. There are however special cases for which we can obtain explicit
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results. These results are used in section 4 to describe some aspects of the fully quantum

mechanical bulk gravity. In particular, we provide evidence that the giant gravitons (re-

stricted Schur polynomials for the totally antisymmetric representations) furnish suitable

high energy degrees of freedom, extending the half-BPS studies of [22]. In section 5 we

present the evidence for our proposal that the composite operator χR,(rn,rm)(Z,X) is con-

structed from the half BPS “partons” χrn(Z) and χrm(X). In section 6 we discuss our

results and outline some open problems.

2. A product rule for restricted Schur polynomials

The Schur polynomial χR(U) gives the character of U ∈ SU(N) in the SU(N) irreducible

representation labeled by Young diagram R. The representation obtained by taking the

direct product of two irreducible SU(N) representations R1 and R2 is in general reducible.

The number of times that irreducible representation T appears is given by the Littlewood-

Richardson number fR1 R2;T . Using the fact that the Schur polynomials compute charac-

ters, it is clear that

χR1(Z)χR2(Z) =
∑

T

fR1 R2;TχT (Z).

Using this product rule, it is easy to compute multipoint functions in terms of two point

functions. For example, for three point functions we have

〈χR1(Z)χR2(Z)χS(Z)†〉 =
∑

T

fR1 R2;T 〈χT (Z)χS(Z)†〉 ,

and for four point functions

〈χR1(Z)χR2(Z)χR3(Z)χS(Z)†〉 =
∑

T

fR1 R2;T 〈χT (Z)χR3(Z)χS(Z)†〉

=
∑

T

∑

U

fR1 R2;T fR3 T ;U 〈χU (Z)χS(Z)†〉 .

These results are in perfect agreement with the exact computations of [3, 27]. It is also clear

that we can compute n-point functions knowing only the product rule and the two point

functions. In this section we will argue that the restricted Schur polynomials themselves

satisfy a simple product rule.

2.1 Dual characters

To begin, we review appendix I of [14]. If two permutations σ, τ satisfy

Tr (σZ⊗n ⊗X⊗m) = Tr (τZ⊗n ⊗X⊗m),

we say they are restricted conjugate. Restricted conjugate is an equivalence relation.

Clearly two elements σ and τ are restricted conjugate if they satisfy

σ = µ−1τµ,
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for some µ ∈ Sn×Sm. Denote the number of restricted conjugate classes by N(n,m) and let

nσ(n,m) denote the number of elements in the restricted conjugate class with representative

σ. N(n,m) is also equal to the number of restricted Schur polynomials χR,(rn,rm) with R an

irreducible representation of Sn+m and (rn, rm) an irreducible representation of Sn × Sm.

The equality between the number of restricted conjugate classes N(n,m) and the total

number of labels R, (rn, rm) generalizes the familiar equality for the symmetric group of

the number of conjugacy classes and the number of irreducible representations. Introduce

the matrix

(M−1)στ =
∑

(R,(rn,rm))

χR,(rn,rm)(σ)χR,(rn,rm)(τ), (2.1)

where the sum on the right hand side runs over all possible labels (R, (rn, rm)). The

restricted character is defined by [14]

χR,(rn,rm)(σ) = Tr (rn,rm) (ΓR(σ)) .

Define the dual restricted character (which we denote by a superscript) by

χR,(rn,rm)(σ) =
n!m!

nσ(n,m)

∑

[

τ
]

r

MστχR,(rn,rm)(τ).

The indices σ and τ that appear in (2.1) run over the restricted conjugacy classes. Denote

the restricted conjugacy class with representative ψ by
[

ψ
]

r
. It is clear that

∑

R,(rn,rm)

χR,(rn,rm)(σ)χR,(rn,rm)(ρ) = n!m!δ(
[

σ
]

r

[

ρ
]

r
). (2.2)

In appendix A we derive a formula for the dual restricted character in terms of the restricted

character. To correctly state this formula, we need to spell out both the row and the column

indices that are summed in the trace. For an “on the diagonal block” trace, the column

and row indices that are summed come from the same carrier space and we are summing

diagonal elements of the matrix; for an “off the diagonal block” trace, the column and

row indices that are traced come from distinct carrier spaces so that we are summing off

diagonal elements of the matrix.1 Indicating both row and column indices of the restricted

trace, the dual character is given by

χR,((rn,rm),(sn,sm))(τ) =
dRn!m!

drndrm(n +m)!
χR,((sn,sm),(rn,rm))(τ). (2.3)

2.2 Product rule

We will now define what we call restricted Littlewood-Richardson numbers. The restricted

Littlewood-Richardson numbers determine the product rule for restricted Schur polyno-

mials in exactly the same way that the Littlewood-Richardson numbers determine the

product rule for Schur polynomials. Let R1 be an irreducible representation of Sn1+m1

1See [13, 14] for more details.
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and let (rn1 , rm1) be an irreducible representation of Sn1 × Sm1 . Let R2 be an irreducible

representation of Sn2+m2 and let (rn2 , rm2) be an irreducible representation of Sn2 × Sm2 .

Finally, let R1+2 be an irreducible representation of Sn1+n2+m1+m2 and let (rn1+2 , rm1+2)

be an irreducible representation of Sn1+n2×Sm1+m2 . The restricted Littlewood-Richardson

numbers are defined by

f
R1+2,(rn1+2 ,rm1+2 )

R1,(rn1 ,rm1 ) R2,(rn2 ,rm2 ) =
1

n1!n2!m1!m2!
(2.4)

×
∑

σ1∈Sn1+m1

∑

σ2∈Sn2+m2

χR1,(rn1 ,rm1 )(σ1)χR2,(rn2 ,rm2 )(σ2)χ
R1+2,(rn1+2 ,rm1+2 )(σ1 ◦ σ2).

To streamline the notation, from now on we will replace the composite label Ri, (rni
, rmi

)

simply by {i} and we define n12 ≡ n1 + n2, m12 ≡ m1 + m2. With the new streamlined

notation we write

f
{1+2}
{1} {2} =

1

n1!n2!m1!m2!

∑

σ1∈Sn1+m1

∑

σ2∈Sn2+m2

χ{1}(σ1)χ{2}(σ2)χ
{1+2}(σ1 ◦ σ2).

The restricted Schur product rule says

χ{1}(Z,X)χ{2}(Z,X) =
∑

{1+2}

f
{1+2}
{1} {2}χ{1+2}(Z,X). (2.5)

A few comments are in order. The restricted Schur polynomial χ{1+2}(Z,X) is given by

χ{1+2}(Z,X) =
1

n12!m12!

∑

ρ∈Sn12+m12

Tr (rn1+2 ,rm1+2 )

(

ΓR1+2(ρ)
)

Tr (ρZ⊗n12 ⊗X⊗m12).

(rn1+2 , rm1+2) is an irreducible representation of the Sn12 ×Sm12 subgroup which permutes

indices of the Zs amongst each other and the indices of the Xs amongst each other. The

representation R1 is an irreducible representation of the Sn1+m1 subgroup that acts on the

first n1 Zs and the first m1 Xs; the representation R2 is an irreducible representation of

the Sn2+m2 subgroup that acts on the remaining n2 Zs and m2 Xs. To demonstrate the

restricted Schur product rule, consider

∑

{1+2}

f
{1+2}
{1} {2}χ{1+2}(Z,X) =

1

n1!n2!m1!m2!
(2.6)

×
∑

{1+2}

∑

σ1∈Sn1+m1

∑

σ2∈Sn2+m2

χ{1}(σ1)χ{2}(σ2)χ
{1+2}(σ1 ◦ σ2)

× 1

n12!m12!

∑

ρ∈Sn12+m12

Tr (rn1+2 ,rm1+2 )

(

ΓR1+2(ρ)
)

Tr (ρZ⊗n1+n2 ⊗X⊗m1+m2).

After using (2.2) we obtain

∑

{1+2}

f
{1+2}
{1} {2}χ{1+2}(Z,X)=

1

n1!n2!m1!m2!

∑

σ1∈Sn1+m1

∑

σ2∈Sn2+m2

∑

ρ∈Sn12+m12

χ{1}(σ1)χ{2}(σ2) ×

×δ(
[

σ1 ◦ σ2

]

r

[

ρ
]

r
)Tr (ρZ⊗n12 ⊗X⊗m12)
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=
1

n1!n2!m1!m2!

∑

σ1∈Sn1+m1

∑

σ2∈Sn2+m2

χ{1}(σ1)χ{2}(σ2)Tr (σ1 ◦ σ2Z
⊗n12 ⊗X⊗m12)

=
1

n1!m1!

∑

σ1∈Sn1+m1

χ{1}(σ1)Tr (σ1Z
⊗n1 ⊗X⊗m1)

1

n2!m2!

∑

σ2∈Sn2+m2

χ{2}(σ2)Tr (σ2Z
⊗n2 ⊗X⊗m2)

= χ{1}(Z,X)χ{2}(Z,X), (2.7)

which proves the product rule.

Using the explicit formula for the dual character (2.3) leads to the formula

f
R1+2,(rn1+2 ,rm1+2 )(sn1+2 ,sm1+2 )

R1,(rn1 ,rm1 ) R2,(rn2 ,rm2) =
n12!m12!

n1!n2!m1!m2!(n12 +m12)!

× dR1+2

drn1+2
drm1+2

∑

σ1∈Sn1+m1

∑

σ2∈Sn2+m2

χR1,(rn1 ,rm1 )(σ1)χR2,(rn2 ,rm2 )(σ2)

×χR1+2,(sn1+2 ,sm1+2 )(rn1+2 ,rm1+2)(σ1 ◦ σ2) (2.8)

for the restricted Littlewood-Richardson numbers.

3. Computation of the restricted Littlewood-Richardson numbers

In this section we will develop rules that will allow us to compute the restricted characters

needed to evaluate the restricted Littlewood Richardson numbers. A general diagrammatic

method, strand diagrams, to compute restricted characters in the case that the polynomial

is built from a single matrix has been developed in [16]. In this section we would like to

develop methods that are powerful enough to allow the computation of restricted characters

for polynomials built out of both Z and X. It is enough to compute the characters of two

cycles, since any element can be decomposed into a product of two cycles. It is precisely

this fact that was exploited to build the strand diagrams of [16]. In the next two sections

the character of arbitrary two cycles for an on the diagonal block restriction and then an

off the diagonal block restriction are computed. Finally, some example computations of

restricted Littlewood-Richardson coefficients are discussed.

3.1 On the diagonal restricted characters of two cycles

We need two pieces of information: first, we will introduce three Casimirs that will be

particularly useful. Second, we will argue that all characters for two cycles which do not

belong to Sn × Sm are equal. Taken together, these two facts will allow us to compute the

restricted character of an arbitrary two cycle.

Let the first n indices be associated with the Z matrices and the next m indices be

associated with the X fields. Greek indices run over α = 1, 2, . . . ,m+ n. Indices from the

start of the alphabet run over a = 1, 2, . . . , n. Indices from the middle of the alphabet run

over i = n+ 1, n + 2, . . . , n+m. The operator

Ôn+m =
n+m
∑

α<β=1

(αβ)

– 7 –
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is a Casimir of Sn+m. When acting on an irreducible representation described by a Young

Diagram R with ri boxes in row i and cj boxes in column j it takes the value

Ôn+m|R〉 =
[

∑

i

ri(ri − 1) −
∑

j

cj(cj − 1)
]

|R〉.

The operators

Ôn =
n
∑

a<b=1

(ab), Ôm =
n+m
∑

i<j=n+1

(ij),

are Casimirs of Sn × Sm. Consider the Sn × Sm irreducible representation R, described by

Young diagrams rn (for the Zs) and rm (for the Xs). rn has r1,i boxes in row i and c1,j

boxes in column j; rm has r2,i boxes in row i and c2,j boxes in column j. These Casimirs

take the values

Ôn|(rn, rm)〉 =
[

∑

i

r1,i(r1,i − 1) −
∑

j

c1,j(c1,j − 1)
]

|(rn, rm)〉,

Ôm|(rn, rm)〉 =
[

∑

i

r2,i(r2,i − 1) −
∑

j

c2,j(c2,j − 1)
]

|(rn, rm)〉.

If a cycle belongs to Sn × Sm it has the form (ab) or (ij). In this case

Tr (rn,rm)((ab)) = Tr rn((ab))drm , and Tr (rn,rm)((ij)) = Tr rm((ij))drn .

We can calculate Tr rn((ab)) and Tr rm((ij)) using the results of [16]. We will now argue

that all characters for two cycles which do not belong to Sn ×Sm are equal. Any two such

cycles can be related as

ΓR

(

(aj)
)

= ΓR

(

(ab)
)

ΓR

(

(jl)
)

ΓR

(

(bl)
)

ΓR

(

(jl)
)

ΓR

(

(ab)
)

= ΓR

(

(ab)
)−1

ΓR

(

(jl)
)−1

ΓR

(

(bl)
)

ΓR

(

(jl)
)

ΓR

(

(ab)
)

.

Thus,

Tr (rn,rm)

(

ΓR

(

(aj)
)

)

= Tr (rn,rm)

(

ΓR

(

(ab)
)−1

ΓR

(

(jl)
)−1

ΓR

(

(bl)
)

ΓR

(

(jl)
)

ΓR

(

(ab)
)

)

= Tr (rn,rm)

(

ΓRγ

(

(ab)
)−1

ΓRγ

(

(jl)
)−1

ΓR

(

(bl)
)

ΓRγ

(

(jl)
)

ΓRγ

(

(ab)
)

)

= Tr (rn,rm)

(

ΓR

(

(bl)
)

)

.

Clearly, all characters for two cycles which do not belong to Sn × Sm are equal.

Taken together, these two facts imply that (the cycle (aj) does not belong to Sn×Sm)

Tr (rn,rm)

(

ΓR

(

(aj)
)

)

=
1

nm

n+m
∑

i=n+1

n
∑

a=1

Tr (rn,rm)

(

ΓR

(

(ia)
)

)

=
1

nm
Tr (rn,rm)(Ôn+m − Ôn − Ôm). (3.1)

The eigenvalue of the Casimir operator Ôn+m − Ôn − Ôm can be written as the sum of the

weights of R minus the sum of the weights of rn minus the sum of the weights of rm. This
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observation allows us to derive much simpler formulas for the case that rm say, contains

only a few boxes. Indeed, we can imagine that (rn, rm) was formed by peeling boxes off R

to leave rn and then combining the peeled boxes to form rm. In this case, the eigenvalue

of Ôn+m − Ôn − Ôm is given by the sum of weights of the boxes peeled off R minus the

sum of the weights of the boxes in rm. We will now give the simplified versions of (3.1) for

the cases that m = 1, 2 or 3.

Restricted character for m = 1. In the following formula, R is an irreducible repre-

sentation of Sn+1 and rn is an irreducible representation of Sn of dimension drn . A single

box must be removed from R to obtain rn. Denote the weight of the box that must be

removed by c1. The simplified character formula is

Tr (rn, )

(

ΓR

(

(aj)
)

)

=
c1 −N

n
drn .

Restricted character for m = 2. In the following formula, R is an irreducible rep-

resentation of Sn+2 and rn is an irreducible representation of Sn of dimension drn . Two

boxes must be removed from R to obtain rn. Denote the weights of the boxes that must

be removed by c1 and c2. The simplified character formulas are

Tr (rn, )

(

ΓR

(

(aj)
)

)

=
c1 + c2 − 2N − 1

2n
drn ,

Tr
(rn, )

(

ΓR

(

(aj)
)

)

=
c1 + c2 − 2N + 1

2n
drn .

Restricted character for m = 3. In the following formula, R is an irreducible repre-

sentation of Sn+3 and rn is an irreducible representation of Sn of dimension drn . Three

boxes must be removed from R to obtain rn. Denote the weights of the boxes that must

be removed by c1, c2 and c3. The simplified character formulas are

Tr (rn, )

(

ΓR

(

(aj)
)

)

=
c1 + c2 + c3 − 3N − 3

3n
drn ,

Tr
(rn, )

(

ΓR

(

(aj)
)

)

= 2
c1 + c2 + c3 − 3N

3n
drn ,

Tr
(rn, )

(

ΓR

(

(aj)
)

)

=
c1 + c2 + c3 − 3N + 3

3n
drn .

3.2 Off the diagonal restricted characters of two cycles

Before we can compute generic restricted characters, we need to compute traces over off

the diagonal blocks: Tr (rn,rm),(sn,sm)

(

ΓR

(

(αβ)
)

)

, where (rn, rm) and (sn, sm) are distinct

Sn × Sm representations. This character clearly vanishes if (αβ) belongs to the Sn × Sm

subgroup. What about the mn two cycles that do not belong to Sn×Sm? For concreteness,

consider the computation of Tr (rn,rm)(sn,sm)

(

ΓR

(

(ai)
)

)

. Let (rn, rm)′I denote the complete

set of irreducible representations of the Sn−1 × Sm−1 subgroup subduced by (rn, rm), that

is ⊕I (rn, rm)′I = (rn, rm). The Sn−1 × Sm−1 subgroup of interest is obtained by keeping

all elements of Sn × Sm that hold indices a and i fixed. The representations (rn, rm)

– 9 –



J
H
E
P
0
6
(
2
0
0
8
)
1
0
1

and (sn, sm) have the same shape2 so that we can establish a bijective map between their

bases. We will assume that this bijective map is the identity, which we can always arrange

by a suitable choice of basis. This choice of basis ensures that when we subduce to the

Sn−1 × Sm−1 subgroup we have

Tr (rn,rm)(sn,sm)

(

ΓR

(

(ai)
)

)

=
∑

I

Tr (rn,rm)′
I
(sn,sm)′

I

(

ΓR

(

(ai)
)

)

.

We will now provide further insight into this formula. It is straight forward to prove that

〈(rn, rm)′I , i|ΓR

(

(ai)
)

)

|(sn, sm)′I〉

vanishes unless (rn, rm)′I and (sn, sm)′I have the same shape. Introduce the Casimirs

Ôn−1 =

n
∑

c<b=16=a

(cb), Ôm−1 =

n+m
∑

k<j=n+16=i

(kj).

Denote the eigenvalue of Casimir Ôn−1 for the (rn, rm)′I representation by λ
(n−1)
r and the

eigenvalue of Casimir Ôm−1 for the (rn, rm)′I representation by λ
(m−1)
r . Clearly, we have

λ(n−1)
r 〈(rn, rm)′I , i|ΓR

(

(ai)
)

|(sn, sm)′I〉 = 〈(rn, rm)′I , i|Ôn−1ΓR

(

(ai)
)

|(sn, sm)′I〉
= 〈(rn, rm)′I , i|ΓR

(

(ai)
)

Ôn−1|(sn, sm)′I〉
= λ(n−1)

s 〈(rn, rm)′I , i|ΓR

(

(ai)
)

|(sn, sm)′I〉,
λ(m−1)

r 〈(rn, rm)′I , i|ΓR

(

(ai)
)

|(sn, sm)′I〉 = 〈(rn, rm)′I , i|Ôm−1ΓR

(

(ai)
)

|(sn, sm)′I〉
= 〈(rn, rm)′I , i|ΓR

(

(ai)
)

Ôm−1|(sn, sm)′I〉
= λ(m−1)

s 〈(rn, rm)′I , i|ΓR

(

(ai)
)

|(sn, sm)′I〉,

which implies that

〈(rn, rm)′I , i|ΓR

(

(ai)
)

|(sn, sm)′I〉 ∝ δ
λ
(n−1)
r λ

(n−1)
s

δ
λ
(m−1)
r λ

(m−1)
s

.

We can repeat this with the complete set of Casimirs of Sn−1 × Sm−1, allowing us to

conclude that

〈(rn, rm)′I , i|ΓR

(

(ai)
)

|(sn, sm)′I〉 ∝ δ(rn,rm)′
I
(sn,sm)′

I
.

δ(rn,rm)′
I
(sn,sm)′

I
is equal to 1 if (rn, rm)′I and (sn, sm)′I have the same shape. Of course,

this is just a consequence of Schur’s Lemma: since ΓR

(

(ai)
)

commutes with all of the

elements of the Sn−1 × Sm−1 subgroup, it is proportional to the identity when acting on

any irreducible representation of Sn−1 × Sm−1. Thus, (the label i inside the ket labels the

carrier space state)

〈(rn, rm)′I , j|ΓR

(

(ai)
)

|(rn, rm)′I , i〉 = η(rn,rm)′
I
δij .

2It is only when (rn, rm) and (sn, sm) have the same shape that the trace Tr (rn,rm)(sn,sm) has any

meaning.
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If we allow ΓR

(

(ai)
)

to act in the full carrier space of R, this equation is modified to (the

sum is over all irreducible representations (tn, tm) that can subduce a (tn, tm)′K of the same

shape as (rn, rm)′I ; the δ(rn,rm)′
I

(sn,sm)′
J

on the last line is there to remind the reader that

a non-zero result is obtained only if (rn, rm)′I and (sn, sm)′J have the same shape)

〈(sn, sm)′J , j|ΓR

(

(ai)
)

|(rn, rm)′I , i〉 =
∑

(tn,tm)′
K

η
(tn,tm)′

K

(rn,rm)′
I
〈(sn, sm)′J , j|(tn, tm)′K , i〉

= η
(sn,sm)′J
(rn,rm)′

I
δ(rn,rm)′

I
(sn,sm)′

J
δij

Although (sn, sm)′J and (rn, rm)′I have the same shape, they may be distinct representations

in which case they were subduced by different Sn × Sm representations. These matrix

elements are needed to provide a complete generalization of strand diagrams. This has an

important implication: in the present case, the most general non-vanishing strand diagrams

will not only record the reordering of boxes in the row and column states, it will also allow

the shape of the row state Sn × Sm representation to reorder itself (by the movement of a

single box in rn and/or a single box in rm) into the column state Sn × Sm representation.

The trace we are interested in can also be expressed in terms of η
(rn,rm)′

I

(rn,rm)′
J
. Indeed, it is

clear that

Tr (rn,rm)(sn,sm)

(

ΓR

(

(ai)
)

)

=
∑

I

Tr (rn,rm)′
I
(sn,sm)′

I

(

ΓR

(

(ai)
)

)

=
∑

I

η
(rn,rm)′

I

(rn,rm)′
I
d(rn,rm)′

I
.

d(rn,rm)′
I

is the dimension of the irreducible representation (rn, rm)′I . Since (rn, rm) and

(sn, sm) have the same shape, we will not need to worry about the extra complication of

changing the Sn × Sm representation between the row and column states.

To determine the restricted character we need, we now only need to fix the η
(rn,rm)′I
(rn,rm)′

I
.

The most direct way we have found to do this proceeds by determining the explicit change of

basis from a natural basis of Sn+m to a natural basis for the Sn×Sm subgroup. We will illus-

trate the method with an example: using the methods of the last subsection, we easily find

Tr
,

(

Γ
(

(3, 4)
)

)

= −1

3
.

To extract from we need to pull off the last box in the first row and the last box in

the first column. They can be pulled off in any order, so that we can write (i labels the

states in the carrier space)

| ; i, 〉 = α|
1

2 i〉 + β|
2

1 i〉. (3.2)

Because the above state is normalized, we need α2 + β2 = 1. Next, using appendix D.2
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of [14] we can write

Γ ((45)) | ; i, 〉 = | ; i, 〉,

Γ ((45))

[

α|
1

2 i〉 + β|
2

1 i〉
]

=

(

α

4
+ β

√
15

4

)

|
1

2 i〉 +

(

−β
4

+ α

√
15

4

)

|
2

1 i〉.

This then implies two equations

α

4
+ β

√
15

4
= α, −β

4
+ α

√
15

4
= β.

They are not independent (as expected) and imply α =
√

5
3β so that

α =

√

5

8
, β =

√

3

8
.

It is now straight forward to use the standard strand diagram techniques of [16] to verify

that

∑

i

(

√

5

8
〈

1

2 i| +
√

3

8
〈

2

1 i|
)

Γ
(

(3, 4)
)

(

√

5

8
|

1

2 i〉 +

√

3

8
|

2

1 i〉
)

= −1

3
.

Although we have computed an on the diagonal character, it is clear that once the rela-

tionship (3.2) is established, it can be used to compute off the diagonal block characters

by employing standard strand diagrams.

Summary of the logic. Using the action of 2-cycles from the Sm subgroup - something

we already know in both bases - we have been able to determine the explicit change of basis

from a natural basis of Sn+m to a natural basis for the Sn×Sm subgroup. This has enabled

us to compute the restricted character of the two cycle (n, n+1) which “straddles” Sn and

Sm. Thus, we can now compute the restricted characters of all two cycles of the form (i, i+

1), which is all that is needed to compute the restricted character of a general group element.

We will now argue that, as long as the number of boxes in rm is small, we can find

formulas for the above change of basis for any representation rn. Removing the m boxes

(used to build rm) from the Sn+m representation R gives a set of states that carry an

index for the carrier space of rn. The coefficient describing the change of basis is clearly

independent of this index. Thus, in what follows, the carrier space index of representation

rn plays no role and is hence suppressed.

Restricted character of (n, n+1) for m = 1. Denote the two labels of the restricted

trace by R, (rn, ) and R, (sn, ). R is a Young diagram with n + 1 boxes; rn and sn are

both Young diagrams with n boxes; they are both obtained by removing a single box from

R. Denote the weight of the box that must be removed from R to obtain rn by cr; denote

the weight of the box that must be removed from R to obtain sn by cs. For an off the
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diagonal block, cr 6= cs. Let R′′ denote the Young diagram obtained when both boxes are

removed. It is now straight forward to show that

Tr (rn, )(sn, )

(

ΓR

(

(n, n + 1)
))

=

√

1 − 1

(cr − cs)2
dR′′ ,

where dR′′ is the dimension of R′′.

Restricted character of (n, n + 1) for m = 2. The two possible types of restricted

Schur labels are R, (rn, ) and R, (rn, ). R is a Young diagram with n + 2 boxes; rn is a

Young diagram with n boxes. rn is obtained from R by removing two boxes from R. We say

that box a is above box b if the weight of box a is greater than the weight of box b. Denote

the weights of the two boxes as c1 and c2, such that the box with weight c1 is above the

box with weight c2. The relations between the natural Sn+2 basis and the natural Sn ×S2

bases are (although we have written these relations using a particular Young diagram, they

are true in general; on the right hand side, the box with label a is to be removed first)

| ; i, 〉 =

√

c1 − c2 + 1

2(c1 − c2)
|

a

b i〉 +

√

c1 − c2 − 1

2(c1 − c2)
|

b

a i〉,

| ; i, 〉 =

√

c1 − c2 − 1

2(c1 − c2)
|

a

b i〉 −
√

c1 − c2 + 1

2(c1 − c2)
|

b

a i〉.

Notice that these states are orthogonal as they must be. It is now straight forward to

obtain any particular character we want by employing standard strand diagram methods.

We will now consider a particular example. The labels for the restricted trace are

R, (rn, ) and R, (sn, ). To obtain a non-zero off the diagonal restricted character, one

of the boxes removed from R to obtain rn must be in the same position as one of the boxes

removed from R to obtain sn. Assume that the common box has weight c1. Denote the

weight of the second box that must be removed to obtain rn by c2 and denote the weight

of the second box that must be removed to obtain sn by c∗2. Denote the Young diagram

obtained by removing all three boxes from R by R′′′. It is straight forward to show that

Tr (rn, )(sn, )

(

ΓR

(

(n, n+ 1)
))

=

√

c1 − c2 + 1

2(c1 − c2)

√

c1 − c∗2 + 1

2(c1 − c∗2)

√

1 − 1

(c2 − c∗2)
2
dR′′′ .

Restricted character of (n, n + 1) for m = 3. We will discuss this example in some

detail because it will provide the key to obtaining general results. We will consider the

case in which the three boxes to be removed have no sides in common. In this case, the

three possible types of restricted Schur labels are R, (rn, ), R, (rn, ) and R, (rn, ). R

is a Young diagram with n+ 3 boxes; rn is a Young diagram with n boxes. rn is obtained

from R by removing three boxes from R. Denote the weights of the boxes to be removed

by c1, c2 and c3. The box with weight c1 lies above the boxes with weights c2 and c3; the

box with weight c2 lies above the box with weight c3. Consider the expansion (on the right
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hand side, the box with label a is to be removed first the box with label b second and the

box with label c third)

| ; 〉 = α123|
a

b
c 〉 + α132|

a
c

b 〉 + α213|
b

a
c 〉

+α231|
b

c
a 〉 + α312|

c
a

b 〉 + α321|
c

b
a 〉 .

Notice that the subscripts encode the order in which boxes are to be dropped. By consider-

ing the action of the cycle of (n+ 2, n+ 3) on the above expression, we obtain 6 equations.

Only three of these are independent; they read

α123 =
1

c1 − c2
α123 +

√

1 − 1

(c1 − c2)2
α213,

α132 =
1

c1 − c3
α132 +

√

1 − 1

(c1 − c3)2
α231,

α321 =
1

c3 − c2
α321 +

√

1 − 1

(c3 − c2)2
α312.

Similarly, by considering the action of the cycle (n+1, n+2) we obtain the following three

independent equations

α123 =
1

c2 − c3
α123 +

√

1 − 1

(c2 − c3)2
α132,

α213 =
1

c1 − c3
α213 +

√

1 − 1

(c1 − c3)2
α312,

α321 =
1

c2 − c1
α321 +

√

1 − 1

(c2 − c1)2
α231.

These six equations can be written in a very compact form: let p denote the subscript of

a particular coefficient, i.e. a particular ordering of the three numbers 1, 2 and 3. Define

the action of the cycle (i, i + 1) on p as follows: all numbers not equal to i or i + 1 stay

where they are; the numbers i and i+ 1 swap positions. Thus, (1, 2) · 123 = 213. We will

also index the entries of p by i = 1, 2, 3. Thus, for p = 231, we have p(1) = 2, p(2) = 3 and

p(3) = 1. The six equations above can now be written as

αp =
1

cp−1(i)−cp−1(i+1)
αp+

√

1− 1

(cp−1(i)−cp−1(i+1))
2
α(i,i+1) · p, i=1, 2, . . . ,m−1. (3.3)

Simple algebra gives

αp =

√

cp−1(i) − cp−1(i+1) + 1

cp−1(i) − cp−1(i+1) − 1
α(i,i+1) · p .

These equations completely determine the unknown coefficients. Indeed, each subscript is

a particular ordering of the three numbers 1, 2 and 3. By using the first set of equations
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we can swap the positions of 1 and 2; by using the second set we can swap the positions of

2 and 3. Using these two operations we can relate any coefficient to any other. Thus, the

normalization condition

α2
123 + α2

132 + α2
213 + α2

231 + α2
312 + α2

321 = 1

can be written completely in terms of α123 (say). This determines α123 and hence all of

the coefficients. Solving for α123 we obtain

α123 =

√

(c1 − c2 + 1)(c1 − c3 + 1)(c2 − c3 + 1)

6(c1 − c2)(c1 − c3)(c2 − c3)
.

These conclusions are rather general: the equations following from applications of two

cycles of the form (n+ i, n + i+ 1), i = 1, 2, . . . ,m− 1 are given by (3.3) for any state on

the right hand side with label R, (rn, (m) ) where (m) is the completely symmetric repre-

sentation. For any state on the right hand side, the equations following from application

of the two cycles (i, i + 1), i = 1, 2, . . . ,m − 1 together with the normalization condition

determines the expansion coefficients uniquely. The resulting solution is

α123···m =

√

√

√

√

√

1

m!

m−1
∏

i=1





m
∏

j=i+1

ci − cj + 1

ci − cj



.

It is now straight forward to compute restricted characters for any restricted traces with

labels R, (rn, ).

Next, consider restricted traces with label R, (rn, ). Things work exactly as for the

case just considered. The relevant expansion is

| ; 〉 = β123|
a

b
c 〉 + β132|

a
c

b 〉 + β213|
b

a
c 〉

+β231|
b

c
a 〉 + β312|

c
a

b 〉 + β321|
c

b
a 〉 .

We will write the results of our analysis for general m. It is straight forward to obtain

−βp =
1

cp−1(i) − cp−1(i+1)
βp +

√

1 − 1

(cp−1(i) − cp−1(i+1))
2
β(i,i+1) · p, i = 1, 2, . . . ,m− 1,

(3.4)

and hence

βp = −
√

cp−1(i) − cp−1(i+1) − 1

cp−1(i) − cp−1(i+1) + 1
β(i,i+1) · p.

Solving these equations together with the normalization condition gives

β123···m

√

√

√

√

√

1

m!

m−1
∏

i=1





m
∏

j=i+1

ci − cj − 1

ci − cj



.
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As a check of our phase conventions, we have checked that αp and βp define orthogonal

vectors.

We have not been able to treat the last case, restricted traces with labels R, (rn, ), for

general rm. Further, the solution we have obtained is not unique, because the representation

appears twice in the outer product × × . We have tried to use the freedom we have

to choose the simplest possible solution. Consider the expansion

| ; i〉a = γa
123 i|

a
b

c 〉 + γa
132 i|

a
c

b 〉 + γa
213 i|

b
a

c 〉

+γa
231 i|

b
c

a 〉 + γa
312 i|

c
a

b 〉 + γa
321 i|

c
b

a 〉 .

a is a multiplicity label - it takes the values 1, 2. i is a label for states in the carrier space

of rm; it takes one of the two values

i = 1 ↔
3 2
1 , i = 2 ↔

3 1
2 .

A straight forward (but tedious) computation now determines

γ1
123 1 = −(c12 − 2)

√

(c23 + 1)(c23 − 1)(c13 + 1)

d
, γ1

132 1 =

√

c23 − 1

c23 + 1
γ1
123 1,

γ1
213 1 = 2

√

(c12 − 1)(c12 + 1)(c23 + 1)(c23 − 1)(c13 + 1)

d
, γ1

312 1 =

√

c13 − 1

c13 + 1
γ1
213 1,

γ1
231 1 = −(c12 + 1)(c23 + 2)

√

(c13 − 1)

d
, γ1

321 1 =

√

c12 − 1

c12 + 1
γ1
231 1,

γ1
123 2 =

c12
√

3(c23 + 1)(c23 − 1)(c13 + 1)

d
, γ1

132 2 = −
√

c23 + 1

c23 − 1
γ1
123 2,

γ1
213 2 = 0, γ1

312 2 = 0,

γ1
231 2 = −(c12 − 1)c23

√

3(c13 − 1)

d
, γ1

321 2 = −
√

c12 + 1

c12 − 1
γ1
231 2,

γ2
123 1 =

(c23 + 1)
√

3(c12 + 1)(c12 − 1)(c13 − 1)

d
, γ2

132 1 =

√

c23 − 1

c23 + 1
γ2
123 1,

γ2
213 1 = −(c13 + 1)

√

3(c13 − 1)

d
, γ2

312 1 =

√

c13 − 1

c13 + 1
γ2
213 1,

γ2
231 1 = −

√

3(c12 + 1)(c12 − 1)(c23 + 1)(c23 − 1)(c13 + 1)

d
, γ2

321 1 =

√

c12 − 1

c12 + 1
γ2
231 1,

γ2
123 2 =

(c23 − 1)
√

(c12 + 1)(c12 − 1)(c13 − 1)

d
, γ2

132 2 = −
√

c23 + 1

c23 − 1
γ2
123 2,

γ2
213 2 =

(2c12c23 + c12 − c23 + 1)
√
c13 − 1

d
, γ2

312 2 = −
√

c13 + 1

c13 − 1
γ2
213 2,

γ2
231 2 =

√

(c12 + 1)(c12 − 1)(c23 + 1)(c23 − 1)(c13 + 1)

d
, γ2

321 2 = −
√

c12 + 1

c12 − 1
γ2
231 2,

where cij ≡ ci − cj and

d =
√

6(c1 − c2)(c2 − c3)(c1 − c3)(2(c1 − c2)(c2 − c3) − 2c2 + c3 + c1 + 1).
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As a partial check of our phase conventions we have verified that

{| ; 〉 , | ; 〉 , | ; i〉a}

provides an orthonormal basis. This does not yet provide a complete treatment of the

m = 3 case, because we have not yet considered the case that the three boxes removed

share common sides. The generalization to this case is straight forward, using the methods

we developed in this section.

3.3 Some example computations of restricted Littlewood-Richardson coeffi-

cients

In this subsection we will discuss the computation of the restricted Littlewood-Richardson

coefficients that will be needed to study graviton interactions in the next section. The first

case we wish to consider are representations where R, rn and rm are totally antisymmetric.

In the case of a single matrix, these correlators are dual to branes that have expanded in

the S5 of the AdS5×S5 geometry. Since n +m is cut off at N it is natural to conjecture

that the same interpretation holds even when the operator is built using two complex Higgs

fields. As an example, for n = 2 and m = 3 we are discussing the restricted representation

with labels

R = ≡ (15), (rn, rm) = ( , ) ≡ (13, 12).

This particular class of restricted characters are particularly easy to compute: because

the dimension of the representation and the dimensions of the restriction are equal, the

restriction is trivial and we have (ǫ(σ) is 1 if σ is an odd permutation and 0 if σ is an even

permutation)

χ(1n+m),(1n,1m)(σ) = χ(1n+m)(σ) = (−1)ǫ(σ),

and

χ(1n+m),(1n,1m)(σ) =
n!m!

(n+m)!
χ1n+m(σ).

Consequently, for the case under consideration, we can express the restricted Littlewood-

Richardson numbers in terms of the Littlewood-Richardson numbers as

f
1n1+n2+m1+m2 ,(1n1+n2 ,1m1+m2 )

1n1+m1 ,(1n1 ,1m1 ) 1n2+m2 ,(1n2 ,1m2 )
=
n12!m12!(n1+m1)!(n2+m2)!

n1!n2!m1!m2!(n12 +m12)!
f1n1+m1 1n2+m2 1n1+n2+m1+m2 ,

where we have used the formula

fRS T =
1

nR!nS !

∑

α1∈SR

∑

α2∈SS

χR(σ1)χS(σ2)χT (σ1 ◦ σ2).

It is satisfying that upon setting m1 = m2 = 0 our restricted Littlewood-Richardson num-

bers reproduce the standard Littlewood-Richardson numbers. Rules for the computation

of the Littlewood-Richardson coefficients can be found, for example, in [28]. For the case

under consideration here, the Littlewood-Richardson number is 1, so that

f
1n1+n2+m1+m2 ,(1n1+n2 ,1m1+m2 )

1n1+m1 ,(1n1 ,1m1 ) 1n2+m2 ,(1n2 ,1m2 )
=
n12!m12!(n1 +m1)!(n2 +m2)!

n1!n2!m1!m2!(n12 +m12)!
.
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Notice that these restricted Littlewood-Richardson numbers are all ≤ 1.

A second case of interest, are representations where R, rn and rm are totally symmetric.

The corresponding single matrix correlators were conjectured to be dual to branes that

have expanded in the AdS5 of the AdS5×S5 geometry. A beautiful test of this conjecture

was given in [29]. We again conjecture that the same interpretation holds even when the

operator is built using two complex Higgs fields. Again, this class of restricted characters

are easy to compute because the dimension of the representation and the dimension of the

restriction are equal. Exactly as above, we can express the restricted Littlewood-Richardson

numbers in terms of the Littlewood-Richardson numbers as

f
(n12+m12),((n1+n2),(m1+m2))
(n1+m1),((n1),(m1)) (n2+m2),((n2),(m2))=

n12!m12!(n1+m1)!(n2+m2)!

n1!n2!m1!m2!(n12 +m12)!
f(n1+m1) (n2+m2) (n12+m12)

=
n12!m12!(n1 +m1)!(n2 +m2)!

n1!n2!m1!m2!(n12 +m12)!
,

where we have used the fact that in this case the Littlewood-Richardson number is again 1.

Again, upon setting m1 = m2 = 0 our restricted Littlewood-Richardson numbers reproduce

the standard Littlewood-Richardson numbers.

Another case in which general results can be obtained, involves multiplying a poly-

nomial in Z (χR1(Z) with R1 an irreducible representation of Sn) by a polynomial in X

(χR2(X) with R2 an irreducible representation of Sm). The relevant restricted Littlewood-

Richardson numbers are simply

f
R,(rn,rm)
R1,(R1,·) R2,(·,R2)

=
dR

(n+m)!drndrm

∑

σ1∈Sn

∑

σ2∈Sm

χR1(σ1)χR2(σ2)χR,(rn,rm)(σ1 ◦ σ2)

=
dR

(n+m)!drndrm

∑

σ1∈Sn

χR1(σ1)χrn(σ1)
∑

σ2∈Sm

χR2(σ2)χrm(σ2)

=
n!m!

(n+m)!

dR

drndrm

δR1rnδR2rm .

We have not explicitly indicated a multiplicity label for rn and rm. This label is needed if

there is more than one way to subduce (rn, rm) from R.

Finally, if we consider products of polynomials for which the total number of Xs par-

ticipating is small, we can construct the explicit change of basis developed in the previous

subsection. With this change of basis in hand, all restricted characters appearing in the

formula for the restricted Littlewood-Richardson numbers can be computed using standard

strand diagram techniques.

4. Graviton interactions

A description of perturbative quantum gravity phrased in terms of graviton degrees of

freedom is expected to fail at high enough energy, when the gravitons become strongly

interacting. A perturbative description of the high energy physics needs to be phrased in

terms of new degrees of freedom that are weakly interacting at high energy. The exact

computations of [22], performed in the half-BPS sector of IIB string theory on AdS5×S5
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show that the sphere giant gravitons provide satisfactory degrees of freedom for a high

energy description. The half-BPS dynamics is captured by the dynamics of a single matrix.

In this section, using the methods we have developed above, we will extend the results of [22]

beyond the one matrix sector. Our conclusions are consistent with those of [22].

To estimate where the graviton description breaks down, we will estimate where the

two point functions differ appreciably from their planar limit. This difference indicates that

non-planar corrections are no longer suppressed and this implies that the large N orthog-

onality of the trace basis fails. The trace basis is dual, at low energies, to the supergravity

Fock space. The fact that orthogonality fails tells us that there are non-negligible interac-

tions mixing the graviton Fock space states; these interactions will invalidate perturbation

theory. If we build traces that contain only Xs or only Zs, we know that orthogonality

fails when we have O(
√
N) fields in each trace [25, 26]. Is this conclusion still valid when

we consider traces containing both Xs and Zs? The computations of [25, 26] used the fact

that the combinatorics associated with the Wick contractions can be computed using a

zero dimensional complex matrix model. These techniques do not have an easy extension

to the mixed traces that interest us. A more powerful alternative technique (employing

symmetric group theory methods) to compute the single trace correlators was developed

in [27]. Using the logic of [27], we are able to compute mixed trace correlators. The basic

idea is that using the results of [11], we know how to compute mixed correlators in the

restricted Schur basis. To get correlators of traces we simply need to change from the

restricted Schur basis to the trace basis. This change of basis is easily accomplished using

dual characters. Any single trace operator can be written as

Tr (σcZ
⊗n ⊗X⊗m) =

∑

R,(rn,rm)

χR,(rn,rm)(σc)χR,(rn,rm)(Z,X),

where σc is an n+m cycle. For concreteness we will consider the trace Tr (ZnXm) which

corresponds to σc = (1 2 3 . . . m+n−2m+n−1m+n), up to conjugation by an element of

Sn × Sm. The computation of the relevant restricted characters is carried out in appendix

D. We find that this character vanishes unless rn and rm are both hooks - Young diagrams

with at most a single column whose length is > 1. Denote the number of rows in rn by

sn +1 and the number of rows in rm by sm +1. To subduce (rn, rm), the Young diagram R

must have at most two column with lengths > 2. We again imagine that boxes are removed

from R to compose rm. The boxes that remain form rn. The result of appendix D says

χR,(rn,rm)(σc) =
(−1)sn+sm

mn

(

∑

i

ci −mN − m(m− 2sm − 1)

2

)

,

where the sum on i runs over all boxes removed from R to produce rm. Thus, the dual

character is

χR,(rn,rm)(σc) =
(hooks)rn

(hooks)rm

(hooks)R

(−1)sn+sm

mn

(

∑

i

ci −mN − m(m− 2sm − 1)

2

)

= sn!(n− sn − 1)!sm!(m− sm − 1)!(−1)sn+sm ×F ,
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where the R dependent factor F is given by

F =

(

∑

i ci −mN − m(m−2sm−1)
2

)

(hooks)R

.

Using the two point functions of [11] it is now straight forward to obtain

〈Tr (σcZ
⊗n ⊗X⊗m)†Tr (σcZ

⊗n ⊗X⊗m)〉 =
∑

R,(rn,rm)

sm!(m− sm − 1)!sn!(n − sn − 1)!

mn

×DimR

(

∑

i

ci−mN−m(m−2sm−1)

2

)2

,

where DimR is the dimension of SU(N) representation R and the sum runs over all labels

such that rn and rm are hooks. Denote the number of boxes in the first row of R by r1
and the number of boxes in the second row of R by r2. Denote the number of boxes in the

first column of R by c1 and the number of boxes in the second column of R by c2. It is

straight forward to see that

r2 = m+n− sm− sn − r1 + 1, c2 = sn + sm − 3− c1, r1 + r2 + c1 + c2 = n+m+ 4.

Summing over R, (rn, rm) can be replaced by a sum over sn, sm, r1 and c1. The value of

the sum is

〈Tr (σcZ
⊗n ⊗X⊗m)†Tr (σcZ

⊗n ⊗X⊗m)〉 =
N2

(n+ 1)(m+ 1)(N2 − 1)

×
(

1

(n+2)(m+2)

[

(N+n+1)!

N !
− (N − 1)!

(N−n−2)!

] [

(N+m+1)!

N !
− (N − 1)!

(N−m−2)!

]

− 1

N(m+ 2)

[

(N + n)!

N !
− (N − 1)!

(N − n− 1)!

] [

(N +m+ 1)!

N !
− (N − 1)!

(N −m− 2)!

]

− 1

N(n+ 2)

[

(N + n+ 1)!

N !
− (N − 1)!

(N − n− 2)!

] [

(N +m)!

N !
− (N − 1)!

(N −m− 1)!

]

+

[

(N + n)!

N !
− (N − 1)!

(N − n− 1)!

] [

(N +m)!

N !
− (N − 1)!

(N −m− 1)!

])

.

The above result is exact (i.e. to all orders in N) in the free field theory limit. Following [22]

we make us of the identity

(N + p1)!

(N − p0 − 1)!
= Np0+p1+1 exp

[

1

2N
(p1 − p0)(p0 + p1 + 1) +O(N−2)

]

,

valid when p0 ≪ N and p1 ≪ N , to explore the behavior of our two point function. We find

an appreciable difference from the planar answer (which is Nn+m) when n2/N or m2/N

(or both) are held fixed. The leading behaviour of our two point correlation function is

〈Tr (σcZ
⊗n ⊗X⊗m)†Tr (σcZ

⊗n ⊗X⊗m)〉 =
4Nn+m+2

nm
sinh

n2

2N
sinh

m2

2N
.
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We have dropped terms of order m
N

and n
N

. No finite order calculation in 1/N will reproduce

this result - in this range of values for m,n perturbation theory breaks down. This suggests

that, even when more than one matrix species participates in the trace, the validity of

perturbation theory in terms of gravitons (that is single trace operators) breaks down

when there are O(
√
N) matrices in the trace. The cautious reader might object that we

have not built operators that correspond to chiral primaries of the SYM and hence that our

operators are not dual to gravitons. This is indeed true. However, the effects we study arise

because the large number of non-planar contractions possible over power the usual N−2

suppression of higher genus effects. Thus, this effect is really only sensitive to the number of

fields appearing in each trace and not the specific details of how these fields are distributed.

We will now compute the three point function for three restricted Schur polynomials.

In what follows we will always employ the multi particle normalization

Γ(1; 2|1 + 2) =
〈χ{1}χ{2}χ

†
{1+2}〉

||χ{1}|| ||χ{2}|| ||χ{1+2}||

of [18]. Consider first the case that each restricted Schur has totally antisymmetric labels

i.e. labels of the form 1n+m, (1n, 1m). This corresponds to the interaction of three sphere

giant gravitons. In this case it is straight forward, using the results of section 2 and 3.3

and of [11] to obtain

Γ(1; 2|1 + 2) =
〈χ1n1+m1 ,(1n1 ,1m1 )χ1n2+m2 ,(1n2 ,1m2 )χ

†
1n12+m12 ,(1n12 ,1m12 )

〉
||χ1n1+m1 ,(1n1 ,1m1 )|| ||χ1n2+m2 ,(1n2 ,1m2 )|| ||χ1n12+m12 ,(1n12 ,1m12 )||

=

√

(N − n1 −m1)!(N − n2 −m2)!

N !(N − n12 −m12)!

√

n12!m12!(n1 +m1)!(n2 +m2)!

n1!n2!m1!m2!(n12 +m12)!
.

We have written this result as a product of two square root factors. The first factor on

the last line has the same form as the one matrix result. If m1 = m2 = 0, this factor is

identically equal to the correlation function computed in the one matrix case. The growth of

this term for different values of n1+m1 and n2+m2 has been considered in detail in [3, 22].

For both n1 +m1 and n2 +m2 fixed as N → ∞ we find that [3, 22] Γ(1; 2|1+2) ∼ O(1), so

that these restricted Schur polynomials do not provide weakly coupled degrees of freedom

for long wavelength (low energy) modes. For n1+m1
N

and n2+m2
N

fixed and small in the limit

N → ∞ we find that [3, 22] Γ(1; 2|1+2) ∼ e−αN with α positive and O(1): these restricted

Schur polynomials provide weakly coupled degrees of freedom for high energy modes. The

second factor is always ≤ 1. To see this, consider the binomial expansion of

(1 + x)m =

m
∑

k=0

(mk ) xk, where (m
k ) =

m!

k!(m− k)!
.

By comparing the coefficient of xr+s coming from the expansion of (1 + x)m times the

expansion of (1 + x)n to the coefficient of xr+s coming from the expansion of (1 + x)m+n,

we learn that

(mr ) (n
s ) + non negative integers =

(

m+n
r+s

)

.
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Thus
(m
r ) (ns )
(

m+n
r+s

) ≤ 1,

which proves that the second factor is ≤ 1. Notice that when m1 = m2 = 0, the second

factor is identically equal to 1 so that our result correctly reduces to the one matrix result

of [3]. In summary, in the multimatrix sector we find the giant graviton degrees of freedom

are weakly coupled at high energy, consistent with the conclusions of [22].

Finally, it is equally easy to compute the correlation function in the case that all three

giants interacting are in completely symmetric representations. This corresponds to the

interaction of three AdS giant gravitons. The result is

Γ(1; 2|1 + 2) =
〈χ(n1+m1),((n1),(m1))χ(n2+m2),((n2),(m2))χ

†
(n12+m12),((n12),(m12))〉

||χ(n1+m1),((n1),(m1))|| ||χ(n2+m2),((n2),(m2))|| ||χ(n12+m12),((n12),(m12))||

=

√

(N + n12 +m12 − 1)!(N − 1)!

(N+m1+n1−1)!(N+n2+m2−1)!

√

n12!m12!(n1 +m1)!(n2 +m2)!

n1!n2!m1!m2!(n12 +m12)!
.

It is again easy to verify that if we set m1 = 0 = m2, we recover the one matrix result of [3].

For n1+m1
N

and n2+m2
N

fixed and small in the limit N → ∞, we find Γ(1; 2|1 + 2) ∼ eαN

with α positive and O(1) suggesting that these restricted Schur polynomials do not provide

weakly coupled degrees of freedom for high energy modes.

5. Interpretation of restricted Schur polynomials

The restricted Schur polynomial χR,(rn,rm)(Z,X) has three labels R, rn and rm. The

label rn is naturally associated to the Zs and the label rm to the Xs. It seems natural

to think that the composite operator χR,(rn,rm)(Z,X) is constructed from the half BPS

“partons” χrn(Z) and χrm(X). In this section we will see if we can gather some evidence

that χR,(rn,rm)(Z,X) indeed has a partonic structure.

Before considering the parton structure of the restricted Schur polynomials, we recall a

related relevant problem: the parton structure of hadrons [30]. At high energy, above about

10 GeV, proton-proton scattering produces a large number of pions, with momenta mainly

collinear with the collision axis. The probability of producing a pion with a large component

of momentum transverse to the collision axis is exponentially suppressed with the value

of the transverse momentum. A picture of the proton as a loosely bound assemblage of

partons was consistent with the observed data. It is at high energies, where the partons

become weakly interacting (thanks to asymptotic freedom) that they are visible in the

experimental results. At low energies the constituents are strongly interacting and the

parton structure of the proton is not visible.

Is there an analogous limit in which we expect the constituents of the restricted Schur

polynomial are weakly interacting? Do we see evidence for a partonic structure in this

limit?

There are two distinct ways in which we could obtain a weakly interacting system.

The parameter which controls the interactions among our proposed constituents is 1
N

. We
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could thus imagine taking N → ∞ and systematically expanding our (exact) correlator

results, keeping only the leading order. Alternatively, we could ask if there are situations

where we expect the constituents are naturally weakly interacting. We will follow this

second approach. Interactions between membranes are mediated by the open strings ending

on the membrane’s worldvolume; in general the string and the membrane can exchange

momentum, that is, the string can exert a force on the membrane. For the special case of

a nearly maximal sphere giant,3 this interaction is highly suppressed and the open strings

attached to a maximal giant do not exert a force on it [31]. Thus, to get weakly interacting

partons, we consider a bound state built from two partons, one of which is a boundstate

of nearly maximal sphere giants. In what follows, we take rn to be a Young diagram with

c columns and p rows with c a number of O(1) and N − p a number of O(1). From the

results of section 3.3 we know that

χrn(Z)χrm(X) =
n!m!

(n+m)!drndrm

∑

R

∑

i

dRχR,(r
(i)
n ,r

(i)
m )

(Z,X),

where the sum is over all representations R that can subduce (rn, rm) and (i) is a multiplicty

label distinguishing the different (rn, rm) representations that can be subduced. If we

normalize the above operators so that they have a unit two point function we obtain

χ̂rn(Z)χ̂rm(X) =
∑

R

∑

i

√

DimR

DimrnDimrm

χ̂
R,(r

(i)
n ,r

(i)
m )

(Z,X), (5.1)

where a hat denotes operators with unit two point function and DimR denotes the dimen-

sion of the SU(N) irreducible representation labeled by R. It is simple to check that there

is a single Young diagram R that dominates the sum on the right hand side; it has the form

displayed in figure 1 below. Indeed, any boxes stacked below rn must be antisymmetrized

with the other indices in the same column of the Young diagram; since the number of boxes

already in the column is p, the index corresponding to the boxes stacked below rn can only

take N − p = O(1) values. In addition, one divides by a big symmetry factor (it is O(N)).

In contrast to this, the indices corresponding to boxes stacked next to rn are symmetrized

with boxes appearing in the same row. These can take O(N) values. Since the number of

boxes in the row is O(1) one divides by an extra symmetry factor of O(1). There is a single

way to subduce this dominant R so that there is no need for the i index. It is now clear

that the leading correction to this term is of order 1
N

. Lets now consider the interaction of

χ̂R,(rn1 ,rm1 )(Z,X) and χ̂S,(sn2 ,sm2 )(Z,X), where both rn1 and sn2 are boundstates of nearly

maximal sphere giants. This is the analog of scattering two protons. Using (5.1) it is now

straight forward to see that

χR,(rn1 ,rm1 )(Z,X)χS,(sn2 ,sm2)(Z,X) =
(hooks)R(hooks)S

(hooks)rn1
(hooks)rm1

(hooks)sn2
(hooks)sm2

×
∑

tn12

∑

tm12

∑

T

∑

i

n12!m12!dT

(n12 +m12)!dtn12
dtm12

frn1sn2 tn12
frm1sm2tm12

χ
T,(t

(i)
n12

,t
(i)
m12

)
(Z,X) .

3To be more precise, we consider a giant graviton which carries momentum p with N − p a number of

O(1).
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Figure 1: The Young diagram which dominates (5.1) is obtained by stacking rm next to rn as

shown.

Even in the large N limit, the right hand side is a sum over a number of terms - many

possible states can be formed as a result of the interaction of our two composites. Note

however that the detailed structure of this interaction, in particular which representations

tn12 and tm12 appear, is determined by the Littlewood-Richardson coefficients frn1sn2 tn1+n2

and frm1sm2tm1+m2
. These Littlewood-Richardson coefficients give the detailed form of the

interaction between the 1
2 BPS partons

χrn1
(Z)χsn2

(Z) =
∑

tn1+n2

frn1sn2tn1+n2
χtn1+n2

(Z),

χrm1
(X)χsm2

(X) =
∑

tm1+m2

frm1sm2 tm1+m2
χtm1+m2

(X).

Thus, the interaction of the composites is as a result of interactions between the partons.

The picture that has emerged is very similar to the parton structure of hadrons described

above.

6. Discussion

In this article we have demonstrated that the restricted Schur polynomials satisfy a simple

product rule, generalizing the rule known for Schur polynomials. Using this rule it is

now possible to perform computations of higher point correlation functions of restricted

Schur polynomials. We have obtained explicit formulas for three point functions of a large

class of restricted Schur polynomials which are built using antisymmetric or symmetric

representations. Using these results we have been able to argue that restricted Schur

polynomials built using the antisymmetric representations provide a suitable set of degrees
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of freedom for the description of perturbative quantum gravity, in agreement with the

conclusions of [22] and extending the explicit computations performed there.

A key building block appearing in the restricted Schur polynomial is the restricted

character. The restricted character is a generalization of the usual character, which plays

a central role in group theory. In this paper there is a development of the restricted

character theory parallel to the character theory of finite groups. The notions of a conjugacy

class and of a dual character, have been generalized to the notions of restricted conjugacy

class and dual restricted characters. These generalizations lead to a set of orthogonality

relations satisfied by the restricted characters. In this way we have ultimately obtained the

generalization of the Littlewood-Richardson coefficient.

By studying the interaction of two restricted Schur polynomials we have suggested a

physical interpretation for the labels of the restricted Schur polynomial: the composite

operator χR,(rn,rm)(Z,X) is constructed from the half BPS “partons” χrn(Z) and χrm(X).

Specifically, we have identified a composite operator in which the constituent partons are

weakly interacting. The interaction of two such composites is largely determined by the

interactions of the partons. This is analogous to the shower of pions produced when two

hadrons interact; the pion shower can be attributed to the parton-parton interactions

between pairs of partons belonging to different hadrons. In cases when the partons are

strongly interacting (for example, at low energy), they are not visible and a partonic

description of hadrons is not useful. In a similar way, we expect that when the constituent

half BPS partons are strongly interacting, this might not be a useful interpretation of the

restricted Schur polynomials. The picture of a composite comprised of half BPS partons

seems to be similar to the proposal of [32] that every supersymmetric four dimensional black

hole of finite area can be split up into microstates made of primitive half-BPS “atoms”.

The idea that each half BPS state should be treated as an independent parton matches

nicely with the picture that has emerged for half-BPS states in AdS5 [2, 33]. Finally, it

is not yet known how to build restricted Schur polynomials that correspond to 1
4 or 1

8

BPS states. In [34] 1
8 and 1

4 BPS states were obtained by putting together 1
2 BPS dual

giants; making contact with that work may indicate which restricted Schur polynomials

correspond to 1
4 or 1

8 BPS states.

Although we have focused on the case of two matrices, the extension to more matrices

is straight forward as described in appendix C. It would be interesting to work out some

explicit examples with more than two matrices. Further, even for two matrices, it would be

nice to make the formalism developed here more efficient. Indeed, in computing the values

of two cycles with one index in the Sn subgroup and one index in the Sm subgroup, we

have built a change of basis. This allows us not only to compute the value of the trace, but

the value of any matrix element. This is much more information than we actually need;

surely more efficient methods can be found.

The Littlewood-Richardson numbers have many interpretations: as coefficients in the

decomposition of tensor products into irreducible GLn modules, as coefficients in the de-

composition of skew Specht modules into irreducibles, as coefficients in the decomposition

of Sn representations induced from Young subgroups and as intersection numbers in the

Schubert calculus on a Grassmannian [35]. How much of this generalizes for restricted
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Littlewood-Richardson numbers? Finally, our work contains some general directions for

the study of multi-matrix models. The eigenvalue based techniques that were so useful

for the description of one matrix models do not seem to have an easy generalization for

multi matrices. For one matrix models, the eigenvalues provide a set of O(N) variables;

since fluctuations about the large N configuration are O(N−2), these provide a suitable set

of variables for the implementation of a saddle point approximation. In general, it would

be incorrect to assume that the matrices of a multimatrix model can be simultaneously

diagonalized.4 Thus, at best it seems that one needs to keep the eigenvalues of each matrix,

plus unitary matrices which encode how one goes between the bases in which a particular

matrix is diagonal. This gives a total of O(N2) variables, so that this does not provide a

promising starting point for a saddle point analysis. In contrast to this, using the technol-

ogy of [14, 9 – 11], we can give a rather detailed description of the free multi-matrix models.

One loop results for the super Yang-Mills F term also have a description in this frame-

work [15, 16, 19]. It would be interesting to develop these methods further by developing

efficient techniques for extracting large N results and for managing more general potentials.
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A. Identities and notation

The polynomials we construct are built out of two matrices, X and Z. We will typically

use an n to denote the number of Zs in the polynomial and an m to denote the number

of Xs in the polynomial. The polynomial is built using an irreducible representation of

the symmetric group Sn+m that permutes the indices of the Z and X fields amongst each

other. We will denote the Young diagrams labeling representations of the symmetric group

acting on both Xs and Zs using capital letters. The indices of the matrix representing

an element of this group will be denoted by capital Greek letters. Thus, the elements

of the matrix representing σ in the Sn+m irreducible representation R will be denoted

by
[

ΓR(σ)
]

ΨΦ
. The irreducible representations of the Sn subgroup that acts only on the

indices of the Z fields will be denoted by a small letter with a subscript n; matrix elements

of this representation will be indexed using letters from the start of the alphabet. Thus, the

elements of the matrix representing σ in the Sn irreducible representation rn will be denoted

by
[

Γrn(σ)
]

ab
. The irreducible representations of the Sm subgroup that acts only on the

indices of the X fields will be denoted by a small letter with a subscript m; matrix elements

4An exception to this is the sector of the theory comprising of the chiral ring at strong coupling - see [36].
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of this representation will be indexed using letters from the middle of the alphabet. Thus,

the elements of the matrix representing σ in the Sm irreducible representation rm will be

denoted by
[

Γrm(σ)
]

ij
. Finally, irreducible representations of the Sn × Sm subgroup that

permute the indices of the Xs and permute the indices of the Zs is denoted by (rn, rm).

The delta function δ(σ) is 1 if σ is the identity and zero otherwise. In this article the δ(·)
is usually summed with a summand that is a class function. In addition, we usually have a

delta function defined on the classes, i.e. we have δ(
[

σ
]

r

[

τ
]

r
) instead of δ(στ). The relation

between these two is easily established: Let F (
[

σ]r) be any class function. By comparing

∑

σ∈Sn

F (
[

σ]r)δ(
[

σ
]

r

[

τ
]

r
) and

∑

σ∈Sn

F (
[

σ]r)δ(στ)

we find that, when summing the delta function multiplied by any class function, over the

whole group, we can freely replace

δ(
[

σ
]

r

[

τ
]

r
)

nσ
R,(rn,rm)

↔ δ(στ).

B. A formula for the restricted Littlewood-Richardson numbers

In this appendix we will employ a bra/ket notation. In what follows, R is an irreducible

representation of Sn+m and (rn, rm) is an irreducible representation of Sn × Sm. We label

the irreducible representations of Sn × Sm by a Young diagram rn with n boxes (which

labels an irreducible representation of Sn) and a Young diagram rm with m boxes (which

labels an irreducible representation of Sm). For states belonging to the carrier space of R

we write |R,Γ〉. For states belonging to the carrier space of (rn, rm) we write labels acted

on by the Sn and Sm subgroups separately |rn, a; rm, i〉. For example, we write

[

ΓR(α)
]

ΛΨ
= 〈R,Λ|α|R,Ψ〉.

For a trace over an “on the diagonal block” (see [13, 14] for an explanation of this termi-

nology) we write

Tr (rn,rm)(ΓR(σ)) =
∑

i,a

∑

ΛΘ

〈rn, a; rm, i|R,Λ〉
[

ΓR(σ)
]

ΛΘ
〈R,Θ|rn, a; rm, i〉.

For an “off the diagonal block” we write

Tr (rn,rm),(sn,sm)(ΓR(σ)) =
∑

i,a

∑

ΛΘ

〈rn, a; rm, i|R,Λ〉
[

ΓR(σ)
]

ΛΘ
〈R,Θ|sn, a; sm, i〉.

For the labels of the off the diagonal block, we need (rn, rm) to have the same shape as

(sn, sm). This means that rn and sn as well as sm and rm have the same shape.

For α1 ∈ Sn and α2 ∈ Sm we have

[

ΓR(α1 ◦ α2)
]

ΨΘ
= 〈R,Ψ|α1 ◦ α2|R,Θ〉
=

∑

rn,rm,a,i

∑

tn,tm,b,j

〈R,Ψ|rn, a; rm, i〉〈rn, a; rm, i|α1 ◦ α2|tn, b; tm, j〉

×〈tn, b; tm, j|R,Θ〉
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=
∑

rn,rm,a,i

∑

b,j

〈R,Ψ|rn, a; rm, i〉
[

Γrn(α1)
]

ab

[

Γrm(α2)
]

ij

×〈rn, b; rm, j|R,Θ〉 .

To get to the last line we have used the fact that if α1 ∈ Sn and α2 ∈ Sm then

〈rn, a; rm, i|α1 ◦ α2|tn, b; tm, j〉 ∝ δrntnδrmtm . Use this identity to compute

∑

α1∈Sn

∑

α2∈Sm

[

ΓR(α1 ◦ α2)
]

ΨΘ

[

Γrn(α−1
1 )
]

ab

[

Γrm(α−1
2 )
]

ij

=
∑

α1 ,α2

∑

tntm

∑

c d k l

〈R,Ψ|tn, c; tm, k〉
[

Γtn(α1)
]

cd

[

Γtm(α2)
]

kl

×〈tn, d; tm, l|R,Θ〉
[

Γrn(α−1
1 )
]

ab

[

Γrm(α−1
2 )
]

ij

=
n!m!

drndrm

∑

i

〈R,Ψ|r(i)n , b; r(i)m , j〉〈r(i)n , a; r(i)m , i|R,Θ〉 .

To obtain this result we have used the fundamental orthogonality relation

∑

α∈G

[

ΓR(α)
]

ab

[

ΓS(α−1)
]

cd
=

g

dR
δRSδadδbc,

with dR the dimension of irreducible representation R and g the order of G. A given

Sn×Sm irreducible representation may be subduced more than once by an Sn+m irreducible

representation R. When applying this relation to the sums over α1 and α2, we will get

a contribution from all representations whose Sn and Sm labels match. The index i in

(r
(i)
n , r

(i)
m ) runs over the complete set of identical Sn ×Sm irreducible representations. This

last identity will be used to argue that the dual character is

χR,Rγ (τ) = χR,(r
(i)
n ,r

(i)
m )(r

(j)
n ,r

(j)
m )(τ) =

dRn!m!

drndrm(n+m)!
χ

R,(r
(j)
n ,r

(j)
m )(r

(i)
n ,r

(i)
m )

(τ).

To verify this, we compute

∑

R,Rγ

χR,Rγ (τ)χR,Rγ (σ)

=
∑

R

∑

r
(i)
n ,r

(i)
m

∑

r
(j)
n ,r

(j)
m

χR,(r
(i)
n ,r

(i)
m )(r

(j)
n ,r

(j)
m )(τ)χ

R,(r
(i)
n ,r

(i)
m )(r

(j)
n ,r

(j)
m )

(σ)

=
∑

R

∑

r
(i)
n ,r

(i)
m

∑

r
(j)
n ,r

(j)
m

∑

Θ,Ψ,Γ,Σ

∑

a,b,i,j

ΓR(σ)ΘΨΓR(τ)ΓΣ〈r(i)n , a; r(i)m , i|R,Θ〉〈R,Ψ|r(j)n , a; r(j)m , i〉

×〈r(j)n , b; r(j)m , j|R,Γ〉〈R,Σ|r(i)n , b; r(i)m , j〉 dRn!m!

drndrm(n+m)!

=
∑

R

∑

rn,rm

∑

Θ,Ψ,Γ,Σ

∑

a,b,i,j

ΓR(σ)ΘΨΓR(τ)ΓΣ
dRn!m!

drndrm(n+m)!

(

drndrm

n!m!

)2

×
∑

α1,α2

[

ΓR(α1 ◦ α2)
]

ΣΘ

[

Γrn(α−1
1 )
]

ba

[

Γrm(α−1
2 )
]

ji
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×
∑

β1,β2

[

ΓR(β1 ◦ β2)
]

ΨΓ

[

Γrn(β−1
1 )
]

ab

[

Γrm(β−1
2 )
]

ij

=
∑

R

∑

α1,α2

ΓR(σ)ΘΨΓR(τ)ΓΣ
dR

(n+m)!

[

ΓR(α1 ◦ α2)
]

ΣΘ

[

ΓR(α−1
1 ◦ α−1

2 )
]

ΨΓ

=
∑

R

∑

α1,α2

χR(σ(α−1
1 ◦ α−1

2 )τ(α1 ◦ α2))
dR

(n +m)!

= n!m!δ(
[

σ
]

r

[

τ
]

r
),

which demonstrates the result. In the above proof we have made use of the formula

∑

R

dR

g
χR(σ) = δ(σ).

Clearly then,

f
T,(t

(i)
n ,t

(i)
m )(t

(j)
n ,t

(j)
m )

R,Rα S,Sβ
=

1

n1!n2!m1!m2!

∑

σ1∈Sn1+m1

∑

σ2∈Sn2+m2

dT (n1 + n2)!(m1 +m2)!

dtndtm(n1 + n2 +m1 +m2)!
χR,Rα(σ1)χS,Sβ

(σ2)χT,(t
(j)
n ,t

(j)
m )(t

(i)
n ,t

(i)
m )

(σ1 ◦ σ2).

C. More than 2 matrices

Consider a matrix model with d species of matrices. R is an irreducible representation of

Sn1+n2+···+nd
and (rn1 , rn2 , . . . , rnd

) is an irreducible representation of Sn1 ×Sn2 ×· · ·×Snd
.

The Young diagram rni
has ni boxes; it labels an irreducible representation of Sni

. It is

straight forward to show that

d
∏

i=1

∑

αi∈Sni

[

ΓR(α1 ◦ α2 ◦ · · · ◦ αd)
]

ΨΘ

[

Γrn1
(α−1

1 )
]

a1b1
· · ·
[

Γrnd
(α−1

d )
]

adbd

=

d
∏

i=1

ni!

drni

∑

j

〈R,Ψ|r(j)n1
, b1; r

(j)
n2
, b2; . . . r

(j)
nd
, bd〉〈r(j)n1

, a1; r
(j)
n2
a2; . . . ; r(j)nd

ad|R,Θ〉 .

This last identity can again be used to argue that the dual character is

χR,(r
(i)
n1

,r
(i)
n2

,...,r
(i)
nd

)(r
(j)
n1

,r
(j)
n2

,...,r
(j)
nd

)(τ) =
d
∏

k=1

nk!

drk

dR

(n1 + n2 + · · · + nk)!
χ

R,(r
(j)
n1

,r
(j)
n2

,...,r
(j)
nd

)(r
(i)
n1

,r
(i)
n2

,...,r
(i)
nd

)
(τ).

Clearly then, (R is an irreducible representation of Sn1+n2+···+nd
; Rα is an irreducible

representation of Sn1 ×Sn2 ×· · ·×Snd
; S is an irreducible representation of Sm1+m2+···+md

;

Sβ is an irreducible representation of Sm1×Sm2×· · ·×Smd
; T is an irreducible representation

of Sn1+n2+···+nd+m1+m2+···+md
; (r

(i)
n1 , r

(i)
n2 , . . . , r

(i)
nd

) and (r
(j)
n1 , r

(j)
n2 , . . . , r

(j)
nd

) have the same

shape and are both irreducible representations of Sn1+m1 × Sn2+m2 × · · · × Snd+md
)

f
T,(r

(i)
n1

,r
(i)
n2

,...,r
(i)
nd

)(r
(j)
n1

,r
(j)
n2

,...,r
(j)
nd

)

R,Rα S,Sβ
=

d
∏

i=1

1

ni!mi!

∑

σ1∈Sn1+n2+···+nd

∑

σ2∈Sm1+m2+···+md
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d
∏

k=1

(nk +mk)!

drk

dR

(n1 + n2 + · · · + nk +m1 +m2 + · · · +mk)!
×

×χR,Rα(σ1)χS,Sβ
(σ2)χT,(r

(j)
n1

,r
(j)
n2

,...,r
(j)
nd

)(r
(i)
n1

,r
(i)
n2

,...,r
(i)
nd

)
(τ).

D. Restricted character computations

In this appendix we will consider the computation of the restricted character, for arbitrary

representations, on the m + n cycle σc = (1, 2, 3, . . . ,m + n). This character is needed

to evaluate the two point functions used in section 4. Representations are labeled by a

Young diagram. To specify a Young diagram, we will list the number of boxes in each

row. In this appendix, the Young diagrams, called “hooks” in [27] will play an important

role. Listing the number of boxes in each row, the hook diagrams are always of the form

(n +m− s, 1, 1, . . . , 1). Recall that the symmetric group character χR(σc) is (−1)s if R is

a hook and zero otherwise. Let us verify this formula, using strand diagrams, for the hook

. There are two possible ways of removing the three boxes

3 2
1 or

3 1
2 .

Using the decomposition

(123) = (12)(23),

the strand diagram gives

1

c1 − c2

1

c2 − c3
= −1

2
× 1 for

3 2
1

=
1

2
×−1 for

3 1
2 . (D.1)

The sum of these contributions is −1 as it should be. Refer to a particular order of removing

the boxes from the Young diagram as a path through the Young diagram. The strand

diagram computation for the character of the m + n cycle σc in the hook representation

(n +m− s, 1, 1, . . . , 1) implies that

∑

paths

m+n−1
∏

i=1

1

ci − ci+1
= (−1)s.

First we establish that the restricted character of the m+n cycle σc with representation

(n +m − s, 1, 1, . . . , 1), and representation of the restriction obtained either by removing

the box from the last or the first row. In this case, don’t sum all paths - only sum paths
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that start from the last or first row respectively. Denote these two sums graphically as

1

=
∑

paths starting in row 1

m+n−1
∏

i=1

1

ci − ci+1
,

1 =
∑

paths starting in row s+1

m+n−1
∏

i=1

1

ci − ci+1
.

The result we will establish says that (recall that there are m+ n boxes in the hook)

1

= (−1)s
m+ n− 1 − s

m+ n− 1
,

1 = (−1)s
s

m+ n− 1
.

Assuming this result is true for a hook with m + n boxes and s + 1 rows, it is straight

forward to prove it is true for a hook with m+n+1 boxes and s+1 or s+2 rows. Indeed,

for m+n+ 1 boxes in the hook and m+n+ 1− s boxes in the first row (so that the hook

has s+ 1 rows), we have

1

=

2 1

+

1

2

=

1

+
1

m+ n
1

=
m+ n− s− 1

m+ n− 1
(−1)s +

1

m+ n

s

m+ n− 1
(−1)s

=
m+ n− s

m+ n
(−1)s .

For m + n + 1 boxes in the hook and m + n − s boxes in the first row (so that the hook

has s+ 2 rows), we have

1 =

2

1 +
2
1

= − 1

m+ n

1

− 1
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= − 1

m+ n

m+ n− s− 1

m+ n− 1
(−1)s − s

m+ n− 1
(−1)s

=
s+ 1

m+ n
(−1)s+1 .

Thus, to establish the result it is enough to show that

1
= −1

2
= 1 ,

which has already been demonstrated in (D.1) above.

We are now ready to tackle the computation of Tr (rn,rm) (ΓR(σc)) . We again use a

strand diagram technique, which amounts to summing over all paths and decomposing σc

into a product of two cycles. The values of all two cycles (i, i+ 1) except for (n, n+ 1) are

given by (ci − ci+1)
−1 with the weights ci read off the paths, coming from rn for i ≤ n− 1

or from rm for i > n. If we strip off the boxes belonging to rn first, we can factor out

a term which equals the character of (1, 2, . . . , n) in irreducible representation rn so that

Tr (rn,rm) (ΓR(σc)) vanishes unless rn is a hook. Stripping off the boxes that belong to rm
first, allows us to conclude that Tr (rn,rm) (ΓR(σc)) again vanishes unless rm is a hook. Let

the hook associated with rn have n boxes, arranged as (n− sn, 1, 1, . . . , 1) and let the hook

associated with rm have m boxes, arranged as (m − sm, 1, 1, . . . , 1). Given that both rn
and rm have to be hooks, what are the allowed values of R? Further, given these values,

what is Tr (rn,rm) (ΓR(σc)) ? The allowed values of R fit into four possible cases. In what

follows we will list the structure of the R, (rn, rm) label for these four cases.

Case 1: rm contained in rn with no overlap. To denote the structure of this case

we display R together with an x in the boxes which are removed to give rm

xx
x

.

In general, the last box removed from rm does not correspond to a specific box in R. In

this case the number cn − cn+1 appearing in the usual strand diagram computations is not

well defined - the strand diagrams techniques of [16] are not applicable. However, for case

1, the box in the second row and second column is the last box of rm that is removed.

Thus, cn − cn+1 has a definite value and it is simple to compute the value of the (n, n+ 1)

cycle. Using the formulas given above, it is straight forward to verify that

Tr (rn,rm) (ΓR(σc)) = −(−1)sm
1

sn

sn(−1)sn

n− 1
+ (−1)sm

1

n− sn − 1

(n− sn − 1)(−1)sn

n− 1
= 0.

Case 2: rm contained in rn with row overlap. Display R together with an x in the

boxes which are removed to give rm

x
xx
x

.
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In this case, the box in the second row and second column or the last marked box in the

first row, is the last box of rm that is removed. The argument for case 1 does not easily

generalize to case 2 (or cases 3 and 4).

Case 3: rm contained in rn with column overlap. Display R together with an x in

the boxes which are removed to give rm

xx
x

x

Case 4: rm contained in rn with row and column overlap. Display R together

with an x in the boxes which are removed to give rm

x
xx
x

x

We will now give an argument applicable to all four cases. As a nontrivial check of

our general formula, we will verify that it predicts zero for case 1. Decompose our n+m

cycle σc as

σc = (1, 2, . . . , n)(n, n+ 1)(n + 1, n + 2, . . . , n+m).

Using the Sn × Sm symmetry enjoyed by our restricted character, we can replace

(1, 2, . . . , n) → Cn =

∑

n cycles(i1, i2, . . . , in)

(n − 1)!
,

(n+ 1, n + 2, . . . , n+m) → Cm =

∑

m cycles(i1, i2, . . . , im)

(m− 1)!
.

Cn is a sum over the (n− 1)! n-cycles in Sn; Cm is a sum over the (m− 1)! m-cycles in Sm.

It is clear that Cn and Cm are Casimirs of the (rn, rm) representation. Using the known

characters of the hooks, it is straight forward to see that

Tr (Cn) = (−1)sn , Tr (Cm) = (−1)sm ,

so that these two Casimirs have eigenvalue

Cn =
(−1)sn

drn

, Cm =
(−1)sm

drm

.

Thus, we now have

Tr (rn,rm) (ΓR(σc)) = Tr (rn,rm) (Cn(n, n+ 1)Cm)

=
(−1)sn

drn

(−1)sm

drm

Tr (rn,rm) ((n, n+ 1))

=
(−1)sn+sm

mn

(

∑

i

ci −mN − m(m− 2sm − 1)

2

)
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where to get to the last line we have used formula (3.1). The sum in the last line is over the

weights in R which are peeled off and recombined to produce rm. Notice that to evaluate

these hooks we have not needed off the diagonal block traces of the (n, n + 1) character,

which is why we are able to obtain a simple and general formula. In addition, this formula

is in perfect agreement with the result obtained above for case 1.
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